KIẾN THỨC CẦN NHỚ
1. Đưa thừa số ra ngoài dấu căn
$\sqrt{A^{2} B}=|A| \cdot \sqrt{B} \quad(B \geq 0)$
2. Đưa thừa số vào trong dấu căn
$A \cdot \sqrt{B}=\sqrt{A^{2} B}$ (với $A \geq 0$ và $B \geq 0$)
$A \cdot \sqrt{B}=-\sqrt{A^{2} B}$ (với $A < 0$ và $B \geq 0$)
BÀI TẬP VÍ DỤ
Ví dụ 1: Đưa nhân tử ra ngoài dấu căn:
a) $\sqrt{12\cdot 15}$; b) $\sqrt{28 \cdot a^{4} b^{2}}$
Bài giải:
a) $\sqrt{12.15}=\sqrt{4.3 .3 .5}=\sqrt{2^{2} \cdot 3^{2} \cdot 5}=\sqrt{2^{2}} \cdot \sqrt{3^{2}} \cdot \sqrt{5}=2.3 \cdot \sqrt{5}=6 \sqrt{5}$.
b) $\sqrt{28 \cdot a^{4} b^{2}}=\sqrt{4\cdot 7 a^{4} b^{2}}=\sqrt{2^{2} \cdot 7 \cdot\left(a^{2}\right)^{2} \cdot b^{2}}$
$\displaystyle =\sqrt{2^{2}} \cdot \sqrt{\left(a^{2}\right)^{2}} \cdot \sqrt{b^{2}} \cdot \sqrt{7}=2 \cdot \| a^{2}|\cdot| b|\cdot \sqrt{7}|=2 \sqrt{7} \cdot a^{2} \cdot|b|$
Ví dụ 2: Đưa nhân tử vào trong dấu căn:
a) $15 \sqrt{2}$ b) $2 a b^{2} \sqrt{4 a}$với $a>0$ c) $a b^{2} \sqrt{-a}$ với $a<0$.
Bài giải:
a) $15 \sqrt{2}=\sqrt{15^{2} \cdot 2}=\sqrt{225\cdot 2}=\sqrt{450}$.
b)Với $a>0$, ta có: $2 a b^{2} \sqrt{4 a}=\sqrt{(2 a)^{2}\left(b^{2}\right)^{2} \cdot 4 a}=\sqrt{16 a^{3} \cdot b^{4}}$.
c) Với $a<0$, ta có: $a b^{2} \sqrt{-a}=-\sqrt{a^{2} \cdot(-a) \cdot\left(b^{2}\right)^{2}}=-\sqrt{-a^{3} b^{4}}$.
BÀI TẬP VẬN DỤNG
BÀI TẬP CƠ BẢN
Bài 1: So sánh:
a) $3 \sqrt{11}$và $2 \sqrt{15} \cdot $
b) $\displaystyle\frac{1}{4} \sqrt{5}$và $5 \sqrt{\frac{1}{4}}$.
Bài giải:
a) $3 \sqrt{11}=\sqrt{11\cdot 3^{2}}=\sqrt{99}$ và $2 \sqrt{15}=\sqrt{15\cdot 4}=\sqrt{60}$
Ta thấy $\sqrt{99}>\sqrt{60} \Rightarrow 3 \sqrt{11}>2 \sqrt{15}$.
b) $\displaystyle\frac{1}{4} \sqrt{5}=\sqrt{\frac{5}{16}}$và $5 \sqrt{\frac{1}{4}}=\sqrt{\frac{25}{4}}$.
Ta thấy $\displaystyle\sqrt{\frac{5}{16}}<\sqrt{\frac{25}{4}} \Rightarrow \frac{1}{4} \sqrt{5}<5 \sqrt{\frac{1}{4}}$.
Bài 2: Rút gọn:
a) $\sqrt{72}-3 \sqrt{20}-5 \sqrt{2}+\sqrt{180}$
b) $2 \sqrt{3 x}-\sqrt{48 x}+\sqrt{108 x}+\sqrt{3 x}=2 \sqrt{3 x}-4 \sqrt{3 x}+6 \sqrt{3 x}+\sqrt{3 x}=5 \sqrt{3 x}$ (Với $ x \geq 0 $)
Bài giải:
a) $\sqrt{72}-3 \sqrt{20}-5 \sqrt{2}+\sqrt{180}=6 \sqrt{2}-6 \sqrt{5}-5 \sqrt{2}+6 \sqrt{5}=\sqrt{2} .$
b) $2 \sqrt{3 x}-\sqrt{48 x}+\sqrt{108 x}+\sqrt{3 x}=2 \sqrt{3 x}-4 \sqrt{3 x}+6 \sqrt{3 x}+\sqrt{3 x}=5 \sqrt{3 x}$ (với $ x \geq 0 $)
BÀI TẬP NÂNG CAO
Bài 1: Rút gọn: $\displaystyle\frac{1}{1-5 x} \cdot \sqrt{3 x^{2}\left(25 x^{2}-10 x+1\right)}$ với $\displaystyle 0 \leq x<\frac{1}{5}$.
Bài giải:
Với điều kiện đã cho ta có:
$\displaystyle\frac{1}{1-5 x} \cdot \sqrt{3 x^{2}\left(25 x^{2}-10 x+1\right)}$
$\displaystyle =\frac{1}{1-5 x} \sqrt{3 x^{2}(5 x-1)^{2}}$
$\displaystyle =\frac{1}{1-5 x} \cdot|x| \cdot|5 x-1| \sqrt{3}$
$\displaystyle =\frac{1}{1-5 x} \cdot x \cdot(1-5 x) \sqrt{3}=x \sqrt{3}$
Bài 2: Tìm x biết:
a) $\displaystyle\sqrt{9 x+9}-2 \sqrt{\frac{x+1}{4}}=4 \cdot $
b) $\displaystyle\sqrt{4 x-20}+\sqrt{x-5}-\frac{1}{3} \sqrt{9 x-45}=4$
Bài giải:
a) Điều kiện $\displaystyle\left\{\begin{array}{l}9 x+9 \geq 0 \\ \frac{x+1}{4} \geq 0\end{array} \Leftrightarrow x+1 \geq 0 \Leftrightarrow x \geq-1\right.$
$\displaystyle\sqrt{9 x+9}-2 \sqrt{\frac{x+1}{4}}=4$
$\displaystyle\Leftrightarrow 3 \sqrt{x+1}-2 \cdot \frac{1}{2} \sqrt{x+1}=4$
$\Leftrightarrow 3 \sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 2 \sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=2$
$\Leftrightarrow x+1=4$
$\Leftrightarrow x=3$
Vậy giá trị x cần tìm là $x=3 \cdot $
b) Điều kiện xác định: $x-5 \geq 0 \Leftrightarrow x \geq 5$
$\displaystyle\sqrt{4 x-20}+\sqrt{x-5}-\frac{1}{3} \sqrt{9 x-45}=4$
$\displaystyle\Leftrightarrow 2 \sqrt{x-5}+\sqrt{x-5}-\frac{1}{3} \cdot 3 \sqrt{x-5}=4$
$\Leftrightarrow 2 \sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$
Vậy giá trị $x$ cần tìm là $x = 9$