Toán lớp 10

Các dạng bài tập về phương trình đường tròn – Toán 10

LÝ THUYẾT CẦN GHI NHỚPhương trình đường tròn– Phương trình đường tròn có tâm $I (a;b)$, bán kính $R$ là $(x-2)^{2}+(y-b)^{2}=R^{2}$– Phương trình $x^{2}+y^{2}-2 a x-2 b y+c=0\left(a^{2}+b^{2}-c>0\right)$ là phương trình của đường tròn tâm $I (a;b)$ và bán kính $R=\sqrt{a^{2}+b^{2}-c}$.Phương trình tiếp tuyến của đường trònCho trước điểm $M_{0}\left(x_{0} ; y_{0}\right)$ nằm trên đường […]

Cách viết phương trình đường thẳng đi qua 2 điểm – Toán 10

Viết phương trình đường thẳng đi qua 2 điểm là dạng bài tập cơ bản trong chương trình Toán 10 mà các em học sinh lớp 10 cần phải nắm được.LÝ THUYẾT CẦN NHỚPhương trình tổng quát của đường thẳngĐường thẳng Δ có phương trình tổng quát là: $a x+b y+c=0 ;\left(a^{2}+b^{2} \neq 0\right)$ nhận […]

Lý thuyết và bài tập bất phương trình lớp 10

A. KIẾN THỨC CẦN NHỚ1. Bất phương trìnha) Bất phương trình tương đương* Hai bất phương trình gọi là tương đương nếu chúng có cùng tập nghiệm.Nếu f1(x) < g1(x) tương đương với f2(x) < g2(x) thì ta viết: $ f_{1}(x)<g_{1}(x)\Leftrightarrow f_{2}(x)<g_{2}(x)$* Bất phương trình f(x) < g(x) tương đương với bất phương trình– f(x) […]

Cách chứng minh đẳng thức vectơ

PHƯƠNG PHÁP CHỨNG MINH ĐẲNG THỨC VECTƠ1) Sử dụng:+ Quy tắc 3 điểm: $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}, \overrightarrow{A C}-\overrightarrow{A B}=\overrightarrow{B C}$ với mọi $A, B, C$.+ Quy tắc hình bình hành: $\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A C}$  với $ABCD$ là hình bình hành.+ Quy tắc trung điểm: $\overrightarrow{M A}+\overrightarrow{M B}=2 \overrightarrow{M I}$ với $I$ là trung điểm […]

Bài tập xác định một vectơ, sự cùng phương cùng hướng, hai vectơ bằng nhau

A. CÁCH LÀMCác em theo dõi ví dụ có lời giải dưới đây để biết cách làm dạng bài tập này.1. Ví dụ xác định một vectơ, sự cùng phương cùng hướng2. Ví dụ chứng minh hai vectơ bằng nhau B. BÀI TẬP TỰ GIẢI1. Bài tập các khái niệm vectơ2. Bài tập xác định […]

Số gần đúng. Sai số

1. Số gần đúngKí hiệu số đúng $ \overline{a}$ là giá trị thực của một đại lượng thì số có giá trị ít nhiều sai lệch với số $ \overline{a}$ được gọi là số gần đúng.2. Sai số tuyệt đối và sai số tương đốiCho a là số gần đúng của số $\overline{a}$Thì sai số tuyệt đối của số $a$, kí […]

Các tập hợp số

1. Tập hợp số tự nhiên, được kí hiệu là Nthì $N={0, 1, 2, 3, ..}$.2. Tập hợp số nguyên, được kí hiệu là Zthì $Z={…, -3, -2, -1, 0, 1, 2, 3, …}$.Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.Tập […]

Tập hợp

1. Khái niệm tập hợpTập hợp là một khái niệm cơ bản (không định nghĩa) của toán học. Các tập hợp thường được kí hiệu bằng những chữ cái in hoa: $A, B, …, X, Y$. Các phần tử của tập hợp được kí hiệu bằng các chữ in thường $a, b, …, x, y$.Kí […]

Mệnh đề

Lý thuyết về mệnh đề1. Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.2. Mệnh đề chứa biến là câu khẳng định mà sự đúng hay sai của nó còn tùy thuộc vào một hay nhiều yểu tố […]