Đại lượng tỉ lệ thuận

NỘI DUNG BÀI VIẾT

KIẾN THỨC CẦN NHỚ

1. Định nghĩa

Nếu đại lượng $y$ liên hệ với đại lượng $x$ theo công thức: $y=k \cdot x$ với $k$ là một hằng số khác 0, thì ta nói $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k$

2. Tính chất

– Tỉ số hai giá trị tương ứng của hai đại lượng tỉ lệ thuận luôn không đổi và bằng hệ số tỉ lệ.

$\dfrac{y_{1}}{x_{1}}=\dfrac{y_{2}}{x_{2}}=\dfrac{y_{3}}{x_{3}}=\ldots=k$

– Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.

$\dfrac{y_{1}}{y_{2}}=\dfrac{x_{1}}{x_{2}}$,  $\dfrac{y_{1}}{y_{3}}=\dfrac{x_{1}}{x_{3}}$

BÀI TẬP VÍ DỤ

Ví dụ 1: Hãy viết công thức tính:

a) Chu vi C (cm) theo cạnh a(cm) của hình vuông.

b) Quãng đường đi được S (km) theo thời gian t (h) của một chuyển động đều với vận tốc 15 (km/h)

c) Khối lượng m(kg) theo thể tích V ($\mathrm{cm}^{3}$) của thanh kim loại đồng chất có khối lượng riêng D ($\mathrm{~kg} / \mathrm{cm}^{3}$)
Bài giải:

a) Công thức tinh chu vi hình vuông theo cạnh a là: $C=4 \cdot a$

b) Công thức tính quãng đường theo thời gian là: $S=\mathbf{1 5 \cdot t}$

c) Công thức tính khối lượng của thanh kim loại đồng chất: $m=D \cdot V$
Ví dụ 2: Cho biết $\bar{y}=$ tỉ lệ thuận với $x$ theo hệ số tỉ kệ $k=-\dfrac{3}{5}$

Hỏi $x$ tỉ lệ thuận với $y$ theo hệ số tỉ lệ nào?

Bài giải: 

Vì $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k=-\dfrac{3}{5}$ nên ta có công thức:

$y=-\dfrac{3}{5} x \Rightarrow x=-\dfrac{5}{3} y$

Vậy $x$ tỉ lệ thuận với $y$ theo hệ số tỉ lệ $-\dfrac{5}{3}\left(=\dfrac{1}{k}\right)$

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *