Học Toán 123 hướng dẫn học sinh lớp 9 cách tìm điều kiện xác định của biểu thức chứa căn, đây là một dạng bài cơ bản trong môn Toán lớp 9.
PHƯƠNG PHÁP TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA BIỂU THỨC CHỨA CĂN
*Ghi nhớ:
+ Hàm số $\displaystyle \sqrt{A}$ xác định ⇔ $\displaystyle A\ge 0$.
+ Hàm phân thức xác định ⇔ mẫu thức khác 0.
VÍ DỤ TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA BIỂU THỨC CHỨA CĂN
Ví dụ 1: Tìm điều kiện của x để các biểu thức sau có nghĩa:
a) $\sqrt{-7 x}$
b) $\sqrt{2 x+6}$
c) $\displaystyle\sqrt{\frac{1}{-4 x+2}}$
Giải:
a)$\displaystyle \sqrt{{-7x}}$ xác định ⇔ $\displaystyle -7x\ge 0\Leftrightarrow x\le 0$
b) $\displaystyle \sqrt{{2x+6}}$ xác định ⇔ $\displaystyle \Leftrightarrow 2x+6\ge 0\Leftrightarrow 2x\ge -6\Leftrightarrow x\ge -3$
c) $\sqrt{\dfrac{1}{-4 x+2}}$ xác định
$\displaystyle \Leftrightarrow \frac{1}{{-4\text{x}+2}}\ge 0\Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {-4\text{x}+2\ne 0} \\ {-4\text{x}+2\ge 0} \end{array}} \right.$
$\displaystyle \Leftrightarrow -4\text{x}+2>0\Leftrightarrow \text{x}<\frac{1}{2}$
Ví dụ 2: Tìm điều kiện xác định của các biểu thức sau:
a) $\sqrt{(x+2)(x-3)}$
b) $\displaystyle\sqrt{\frac{1}{x^{4}-16}}$
c) $\displaystyle\sqrt[3]{\frac{x-2}{x+5}}$
Giải:
a) $\sqrt{(x+2)(x-3)}$ xác định
$\Leftrightarrow(x+2)(x-3) \geq 0$
$\Leftrightarrow\left[\begin{array}{l}\{\mathrm{x}+2 \geq 0 \\ \mathrm{x}-3 \geq 0 \\ \left\{\begin{array}{l}\mathrm{x}+2 \leq 0 \\ \mathrm{x}-3 \leq 0\end{array}\right.\end{array} \Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}\mathrm{x} \geq-2 \\ \mathrm{x} \geq 3\end{array}\right. \\ \mathrm{x} \leq-2 \\ \mathrm{x} \leq 3\end{array}\right.\right.$
$\Leftrightarrow\left[\begin{array}{l}\mathrm{x} \geq 3 \\ \mathrm{x} \leq-2\end{array}\right.$
Vậy điều kiện xác định của biểu thức là $x \geq 3$ hoặc $x \leq-2$.
b) $\sqrt{\dfrac{1}{x^{4}-16}}$ xác định
$\Leftrightarrow \frac{1}{x^{4}-16} \geq 0$
$\Leftrightarrow x^{4}-16 \geq 0$
$\Leftrightarrow\left(x^{2}-4\right)\left(x^{2}+4\right) \geq 0$
$\Leftrightarrow(x-2)(x+2)\left(x^{2}+4\right) \geq 0$
$\displaystyle \Leftrightarrow (x-2)(x+2)\ge 0$ (vì $\displaystyle {{{x}^{2}}+4>0}$)
$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x-2 \geq 0 \\ x+2 \geq 0\end{array}\right. \\ \left\{\begin{array}{l}x-2 \leq 0 \\ x+2 \leq 0\end{array}\right.\end{array} \Leftrightarrow\left[\begin{array}{l}\{x \geq 2 \\ x \geq-2 \\ \left\{\begin{array}{l}x \leq 2 \\ x \leq-2\end{array} \Leftrightarrow\left[\begin{array}{l}x \geq 2 \\ x \leq-2\end{array}\right.\right.\end{array}\right.\right.$
Vậy điều kiện xác định của biểu thức là $\displaystyle x\ge 2$ hoăc $\displaystyle x\le -2$.
c) $\displaystyle \sqrt[3]{{\frac{{x-2}}{{x+5}}}}$ xác định
$\Leftrightarrow x+5 \neq 0$
$\Leftrightarrow x \neq-5$
Vậy điều kiện xác định của biểu thức là $\displaystyle x\ne 5$.