KIẾN THỨC CẦN NHỚ
1. Phép nhân hai phân số và các tính chất của phép nhân hai phân số
Phép nhân hai phân số
Quy tắc: Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
Ví dụ 1: $\displaystyle\frac{2}{3} \times \frac{5}{9}=\frac{2 \times 5}{3 \times 9}=\frac{10}{27}$
Ví dụ 2: $\displaystyle\frac{3}{4} \times \frac{5}{9}=\frac{3 \times 5}{4 \times 9}=\frac{15}{36}=\frac{5}{12}$
Lưu ý:
+) Sau khi làm phép nhân hai phân số, nếu thu được phân số chưa tối giản thì ta phải rút gọn thành phân số tối giản
+) Khi nhân hai phân số, sau bước lấy tử số nhân tử số, mẫu số nhân với mẫu số, nếu tử số và mẫu số cùng chia hết cho một số nào đó thì ta rút gọn luôn, không nên nhân lên sau đó rút gọn.
Ví dụ quay lại ở ví dụ 2:
$\displaystyle\frac{3}{4} \times \frac{5}{9}=\frac{3 \times 5}{4 \times 9}=\frac{1 \times 5}{4 \times 3}=\frac{5}{12}$
Các tính chất của phép nhân phân số
+) Tính chất giao hoán: Khi đổi chỗ các phân số trong một tích thì tích của chúng không thay đổi.
+) Tính chất kết hợp: Khi nhân một tích hai phân số với phân số thứ ba, ta có thể nhân phân số thứ nhất với tích của hai phân số còn lại.
+) Tính chất phân phối: Khi nhân một tổng hai phân số với phân số thứ ba, ta có thể nhân lần lượt từng phân số của tổng với phân số thứ ba rồi cộng các kết quả đó lại với nhau.
+) Nhân với 1: Phân số nào nhân với 1 cũng bằng chính phân số đó
+) Nhân với 0: Phân số nào nhân với 0 cũng bằng 0
Phép chia hai phân số
a) Phân số đảo ngược
Phân số đảo ngược của một phân số là phân số đảo ngược từ phân số thành mẫu số, mẫu số thành tử số.
Ví dụ: Phân số $\displaystyle\frac{2}{3}$ gọi là phân số đảo ngược của phân số $\displaystyle\frac{3}{2}$.
b) Phép chia phân số
Quy tắc: Muốn chia hai phân số; ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.
Ví dụ: $\displaystyle\frac{3}{4}\colon \frac{2}{5}=\frac{3}{4} \times \frac{5}{2}=\frac{15}{8}$
CÁC DẠNG TOÁN
Dạng 1: Tính giá trị các biểu thức
Phương pháp giải:
Áp dụng các quy tắc tính giá trị biểu thức như ưu tiên tính trong ngoặc trước, biểu thức có phép nhân,chia, cộng, trừ thì ta thực hiện phép tính nhân, chia trước, thực hiện phép cộng trừ sau …
Dạng 2: Tìm x
Phương pháp giải:
Xác định xem x đóng vai trò gì, từ đó tìm x theo các quy tắc đã học
Dạng 3: Tính nhanh
Phương pháp giải:
Áp dụng các tính chất của phép nhân phân số để tính nhanh một cách dễ dàng hơn.
Dạng 4: Toán có lời văn
BÀI TẬP VÍ DỤ
Ví dụ 1: Tính giá trị biểu thức: $\displaystyle\frac{5}{9} \times \frac{7}{8}\colon \frac{1}{4}$
Bài giải:
$\displaystyle\frac{5}{9} \times \frac{7}{8}: \frac{1}{4}=\frac{35}{72}: \frac{1}{4}=\frac{35}{72} \times \frac{4}{1}=\frac{35 \times 4}{72 \times 1}=\frac{35 \times 1}{18 \times 1}=\frac{35}{18}$
Ví dụ 2: Tìm x biết: $\displaystyle x \times \frac{12}{17}=\frac{8}{51}$
Bài giải:
$\displaystyle x \times \frac{12}{17}=\frac{8}{51}$
$\displaystyle x=\frac{8}{51}: \frac{12}{17}$
$\displaystyle x=\frac{8}{51} \times \frac{17}{12}$
$\displaystyle x=\frac{8 \times 17}{51 \times 12}$
$\displaystyle x=\frac{2}{9}$
Ví dụ 3: Tính nhanh: $\displaystyle\frac{5}{7} \times \frac{9}{13}+\frac{4}{13} \times \frac{5}{7}$
Bài giải:
$\displaystyle\frac{5}{7} \times \frac{9}{13}+\frac{5}{7} \times \frac{4}{13}=\frac{5}{7} \times\left(\frac{9}{13}+\frac{4}{13}\right)=\frac{5}{7} \times \frac{13}{13}=\frac{5}{7} \times 1=\frac{5}{7}$
Ví dụ 4: Một hình bình hành có độ dài đáy $\displaystyle\frac{9}{2} \mathrm{~cm}$, chiều cao tương ứng là $\displaystyle\frac{3}{2} \mathrm{~cm}$. Tính diện tích hình bình hành đó.
Bài giải:
Diện tích hình bình hành đó là: $\displaystyle\frac{9}{2} \times \frac{3}{2}=\frac{27}{4}\left(\mathrm{~cm}^{2}\right)$
Đáp số: $\displaystyle\frac{27}{4} \mathrm{~cm}^{2}$.