Rút gọn biểu thức là dạng toán thường gặp, thường là bài đầu tiên trong đề thi môn Toán tuyển sinh vào lớp 10 THPT.
Trong bài viết này Học Toán 123 chia sẻ với các em cách làm và một số bài tập tổng hợp trong các đề thi, giúp các em ôn tập hiệu quả.
PHƯƠNG PHÁP
– Phân tích đa thức tử và mẫu thành nhân tử;
– Tìm điều kiện xác định (Nếu bài toán chưa cho ĐKXĐ)
– Rút gọn từng phân thức(nếu được)
– Thực hiện các phép biến đổi đồng nhất như:
+ Quy đồng (đối với phép cộng trừ); nhân, chia.
+ Bỏ ngoặc: bằng cách nhân đơn; đa thức hoặc dùng hằng đẳng thức
+ Thu gọn: cộng, trừ các hạng tử đồng dạng.
+ Phân tích thành nhân tử – rút gọn
*Chú ý: Trong mỗi bài toán rút gọn thường có các câu thuộc các loại toán:
+ Tính giá trị biểu thức;
+ Giải phương trình; bất phương trình;
+ Tìm giá trị của biến để biểu thức có giá trị nguyên;
+ Tìm giá trị nhỏ nhất, lớn nhất…
VÍ DỤ
Cho biểu thức: $ P=\left( {\dfrac{1}{{a-\sqrt{a}}}+\dfrac{1}{{\sqrt{a}-1}}} \right):\dfrac{{\sqrt{a}+1}}{{a-2\sqrt{a}+1}}$
a/ Rút gọn $P$.
b/ Tìm giá trị của a để biểu thức $P$ có giá trị nguyên.
Giải:
a/ Rút gọn $P$:
– Phân tích: $ P=\left[ {\dfrac{1}{{\sqrt{a}(\sqrt{a}-1)}}+\dfrac{1}{{\sqrt{a}-1}}} \right]:\dfrac{{\sqrt{a}+1}}{{{{{(\sqrt{a}-1)}}^{2}}}}$
– ĐKXĐ:$ \left\{ \begin{array}{l}a>0;\\\sqrt{a}-1\ne 0\Leftrightarrow a\ne 1\end{array} \right.$
– Quy đồng: $ P=\dfrac{{1+\sqrt{a}}}{{\sqrt{a}(\sqrt{a}-1)}}.\dfrac{{{{{(\sqrt{a}-1)}}^{2}}}}{{\sqrt{a}+1}}$
– Rút gọn:$ P=\dfrac{{\sqrt{a}-1}}{{\sqrt{a}}}.$
b/ Tìm giá trị của a để P có giá trị nguyên:
– Chia tử cho mẫu ta được: $ P=1-\dfrac{1}{{\sqrt{a}}}$ .
– Lý luận: $P$ nguyên $ \Leftrightarrow \dfrac{1}{{\sqrt{a}}}$ nguyên $ \Leftrightarrow \sqrt{a}$ là ước của 1 là $ \pm 1$
$ \Rightarrow \sqrt{a}=\left\{ \begin{array}{l}-1(ktm)\\1\Leftrightarrow a=1\end{array} \right.$
Vậy với $a = 1$ thì biểu thức $P$ có giá trị nguyên.
BÀI TẬP TỰ GIẢI
Bài 1: Cho biểu thức $ A =\left( \dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}} \right)\left( \dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1} \right)$
a. Rút gọn biểu thức $A$;
b. Tìm giá trị của $x$ để $A > – 6$.
Bài 2: Cho biểu thức $ B =\left( {\dfrac{{\sqrt{x}}}{{x-4}}+\dfrac{2}{{2-\sqrt{x}}}+\dfrac{1}{{\sqrt{x}+2}}} \right):\left( {\sqrt{x}-2+\dfrac{{10-x}}{{\sqrt{x}+2}}} \right)$
a) Rút gọn biểu thức $B$;
b) Tìm giá trị của $x$ để $A > 0$.
Bài 3: Cho biểu thức $ C =\dfrac{1}{{\sqrt{x}-1}}-\dfrac{3}{{x\sqrt{x}+1}}+\dfrac{1}{{x-\sqrt{x}+1}}$
a) Rút gọn biểu thức $C$;
b) Tìm giá trị của $x$ để $C < 1$.
Bài 4: Rút gọn biểu thức: $ D =\dfrac{{x+2+\sqrt{{{{x}^{2}}-4}}}}{{x+2-\sqrt{{{{x}^{2}}-4}}}}+\dfrac{{x+2-\sqrt{{{{x}^{2}}-4}}}}{{x+2+\sqrt{{{{x}^{2}}-4}}}}$
Bài 5: Cho các biểu thức: $ P =\dfrac{{2x-3\sqrt{x}-2}}{{\sqrt{x}-2}}$và $ Q =\dfrac{{\sqrt{{{{x}^{3}}}}-\sqrt{x}+2x-2}}{{\sqrt{x}+2}}$
a) Rút gọn biểu thức $P$ và $Q$;
b) Tìm giá trị của $x$ để $P = Q$.
Bài 6: Cho biểu thức: $ P =\dfrac{{2x+2}}{{\sqrt{x}}}+\dfrac{{x\sqrt{x}-1}}{{\text{x}-\sqrt{x}}}-\dfrac{{x\sqrt{x}+1}}{{\text{x}+\sqrt{x}}}$
a) Rút gọn biểu thức $P$
b) So sánh $P$ với $5$.
c) Với mọi giá trị của x làm P có nghĩa, chứng minh biểu thức $ \dfrac{8}{\text{P}}$ chỉ nhận đúng một giá trị nguyên.
Bài 7: Cho biểu thức: $ P =\left( {\dfrac{{3x+\sqrt{{9x}}-3}}{{x+\sqrt{x}-2}}+\dfrac{1}{{\sqrt{x}-1}}+\dfrac{1}{{\sqrt{x}+2}}} \right):\dfrac{1}{{\text{x}-1}}$
a) Tìm điều kiện để $P$ có nghĩa, rút gọn biểu thức $P$;
b) Tìm các số tự nhiên $x$ để $ \dfrac{1}{\text{P}}$ là số tự nhiên;
c) Tính giá trị của $P$ với $x = 4 – 2 \sqrt{3}$.
Bài 8: Cho biểu thức : $ P =\left( {\dfrac{{\sqrt{x}+2}}{{\text{x}-5\sqrt{x}+6}}-\dfrac{{\sqrt{x}+3}}{{\text{2}-\sqrt{x}}}-\dfrac{{\sqrt{x}+2}}{{\sqrt{x}-3}}} \right):\left( {2-\dfrac{{\sqrt{x}}}{{\sqrt{x}+1}}} \right)$
a) Rút gọn biểu thức P;
b) Tìm $x$ để $ \dfrac{1}{\text{P}}\le -\dfrac{5}{2}$
Bài 9: Cho biểu thức : $P= \left( {\dfrac{{1-a\sqrt{a}}}{{1-\sqrt{a}}}+\sqrt{a}} \right).\left( {\dfrac{{1+a\sqrt{a}}}{{1+\sqrt{a}}}-\sqrt{a}} \right)$
a) Rút gọn $P$
b) Tìm $a$ để $P < 7-4\sqrt{3}$
Bài 10: Cho biểu thức: $P= \left( {\dfrac{{2\sqrt{x}}}{{\sqrt{x}+3}}+\dfrac{{\sqrt{x}}}{{\sqrt{x}-3}}-\dfrac{{3x+3}}{{x-9}}} \right):\left( {\dfrac{{2\sqrt{x}-2}}{{\sqrt{x}-3}}-1} \right)$
a) Rút gọn $P$
b) Tìm $x$ để $P < \dfrac{1}{2}$
c) Tìm giá trị nhỏ nhất của P
Bài 11: Cho biểu thức : $P= \left( {\dfrac{{x-3\sqrt{x}}}{{x-9}}-1} \right):\left( {\dfrac{{9-x}}{{x+\sqrt{x}-6}}-\dfrac{{\sqrt{x}-3}}{{2-\sqrt{x}}}-\dfrac{{\sqrt{x}-2}}{{\sqrt{x}+3}}} \right)$
a) Rút gọn $P$
b) Tìm giá trị của $x$ để $P<1$
Bài 12: Cho biểu thức : $P= \dfrac{{15\sqrt{x}-11}}{{x+2\sqrt{x}-3}}+\dfrac{{3\sqrt{x}-2}}{{1-\sqrt{x}}}-\dfrac{{2\sqrt{x}+3}}{{\sqrt{x}+3}}$
a) Rút gọn $P$
b) Tìm các giá trị của $x$ để $P= \dfrac{1}{2}$
c) Chứng minh $P$ \le \dfrac{2}{3}$
Bài 13: Cho biểu thức: $P= \dfrac{{2\sqrt{x}}}{{\sqrt{x}+m}}+\dfrac{{\sqrt{x}}}{{\sqrt{x}-m}}-\dfrac{{{{m}^{2}}}}{{4x-4{{m}^{2}}}}$ với m > 0
a) Rút gọn $P$
b) Tính $x$ theo m để $P = 0$.
c) Xác định các giá trị của m để x tìm được ở câu b thoả mãn điều kiện $x >1$
Bài 14: Cho biểu thức : $P= \dfrac{{{{a}^{2}}+\sqrt{a}}}{{a-\sqrt{a}+1}}-\dfrac{{2a+\sqrt{a}}}{{\sqrt{a}}}+1$
a) Rút gọn $P$
b) Tìm a để $P = 2$
c) Tìm giá trị nhỏ nhất của $P$ ?
Bài 15: Cho biểu thức $ P = \left( {\dfrac{{\sqrt{a}+1}}{{\sqrt{{ab}}+1}}+\dfrac{{\sqrt{{ab}}+\sqrt{a}}}{{\sqrt{{ab}}-1}}-1} \right):\left( {\dfrac{{\sqrt{a}+1}}{{\sqrt{{ab}}+1}}-\dfrac{{\sqrt{{ab}}+\sqrt{a}}}{{\sqrt{{ab}}-1}}+1} \right)$
a) Rút gọn $P$
b) Tính giá trị của $P$ nếu $a = 2-\sqrt{3}$ và b =$ \dfrac{{\sqrt{3}-1}}{{1+\sqrt{3}}}$
c) Tìm giá trị nhỏ nhất của $P$ nếu $ \sqrt{a}+\sqrt{b}=4$
Bài 16: Cho biểu thức: $P= \dfrac{{a\sqrt{a}-1}}{{a-\sqrt{a}}}-\dfrac{{a\sqrt{a}+1}}{{a+\sqrt{a}}}+\left( {\sqrt{a}-\dfrac{1}{{\sqrt{a}}}} \right)\left( {\dfrac{{\sqrt{a}+1}}{{\sqrt{a}-1}}+\dfrac{{\sqrt{a}-1}}{{\sqrt{a}+1}}} \right)$
a) Rút gọn $P$
b) Với giá trị nào của $a$ thì $P = 7$
c) Với giá trị nào của $a$ thì $P > 6$
Bài 17: Cho biểu thức: $P = {{\left( {\dfrac{{\sqrt{a}}}{2}-\dfrac{1}{{2\sqrt{a}}}} \right)}^{2}}\left( {\dfrac{{\sqrt{a}-1}}{{\sqrt{a}+1}}-\dfrac{{\sqrt{a}+1}}{{\sqrt{a}-1}}} \right)$
a) Rút gọn $P$
b) Tìm các giá trị của $a$ để $P < 0$
c) Tìm các giá trị của $a$ để $P = -2$
Bài 18: Cho biểu thức: $P= \dfrac{{{{{\left( {\sqrt{a}-\sqrt{b}} \right)}}^{2}}+4\sqrt{{ab}}}}{{\sqrt{a}+\sqrt{b}}}.\dfrac{{a\sqrt{b}-b\sqrt{a}}}{{\sqrt{{ab}}}}$
a) Tìm điều kiện để $P$ có nghĩa.
b) Rút gọn $P$
c) Tính giá trị của $P$ khi $a = 2\sqrt{3}$ và $b = \sqrt{3}$
Bài 19: Cho biểu thức : $P= \left( {\dfrac{{x+2}}{{x\sqrt{x}-1}}+\dfrac{{\sqrt{x}}}{{x+\sqrt{x}+1}}+\dfrac{1}{{1-\sqrt{x}}}} \right):\dfrac{{\sqrt{x}-1}}{2}$
a) Rút gọn $P$
b) Chứng minh rằng $P > 0 \forall x \ne 1$
Bài 20: Cho biểu thức : $P= \left( {\dfrac{{2\sqrt{x}+x}}{{x\sqrt{x}-1}}-\dfrac{1}{{\sqrt{x}-1}}} \right):\left( {1-\dfrac{{\sqrt{x}+2}}{{x+\sqrt{x}+1}}} \right)$
a) Rút gọn $P$
b) Tính $ \sqrt{P}$ khi x =$ 5+2\sqrt{3}$
Bài 21: Cho biểu thức: $P= 1:\left( {\dfrac{1}{{2+\sqrt{x}}}+\dfrac{{\dfrac{{3x}}{2}}}{{4-x}}-\dfrac{2}{{4-2\sqrt{x}}}} \right):\dfrac{1}{{4-2\sqrt{x}}}$
a) Rút gọn $P$
b) Tìm giá trị của $x$ để $P = 20$
Bài 22: Cho biểu thức : $P= \left( {\dfrac{{x-y}}{{\sqrt{x}-\sqrt{y}}}+\dfrac{{\sqrt{{{{x}^{3}}}}-\sqrt{{{{y}^{3}}}}}}{{y-x}}} \right):\dfrac{{{{{\left( {\sqrt{x}-\sqrt{y}} \right)}}^{2}}+\sqrt{{xy}}}}{{\sqrt{x}+\sqrt{y}}}$
a) Rút gọn $P$
b) Chứng minh $P \ge 0$
Bài 23: Cho biểu thức :
$P= \left( {\dfrac{1}{{\sqrt{a}+\sqrt{b}}}+\dfrac{{3\sqrt{{ab}}}}{{a\sqrt{a}+b\sqrt{b}}}} \right).\left[ {\left( {\dfrac{1}{{\sqrt{a}-\sqrt{b}}}-\dfrac{{3\sqrt{{ab}}}}{{a\sqrt{a}-b\sqrt{b}}}} \right):\dfrac{{a-b}}{{a+\sqrt{{ab}}+b}}} \right]$
a) Rút gọn $P$
b) Tính $P$ khi $a =16$ và $b = 4$
Bài 24: Cho biểu thức: $P= 1+\left( {\dfrac{{2a+\sqrt{a}-1}}{{1-a}}-\dfrac{{2a\sqrt{a}-\sqrt{a}+a}}{{1-a\sqrt{a}}}} \right).\dfrac{{a-\sqrt{a}}}{{2\sqrt{a}-1}}$
a) Rút gọn $P$
b) Cho $P = \dfrac{{\sqrt{6}}}{{1+\sqrt{6}}}$ tìm giá trị của $a$
c) Chứng minh rằng $P > \dfrac{2}{3}$
Bài 25: Cho biểu thức: $P= \left( {\dfrac{{x-5\sqrt{x}}}{{x-25}}-1} \right):\left( {\dfrac{{25-x}}{{x+2\sqrt{x}-15}}-\dfrac{{\sqrt{x}+3}}{{\sqrt{x}+5}}+\dfrac{{\sqrt{x}-5}}{{\sqrt{x}-3}}} \right)$
a) Rút gọn $P$
b) Với giá trị nào của $x$ thì $P < 1$
Bài 26: Cho biểu thức: $P= \left( {\dfrac{{3\sqrt{a}}}{{a+\sqrt{{ab}}+b}}-\dfrac{{3a}}{{a\sqrt{a}-b\sqrt{b}}}+\dfrac{1}{{\sqrt{a}-\sqrt{b}}}} \right):\dfrac{{\left( {a-1} \right).\left( {\sqrt{a}-\sqrt{b}} \right)}}{{2a+2\sqrt{{ab}}+2b}}$
a) Rút gọn $P$
b) Tìm những giá trị nguyên của a để $P$ có giá trị nguyên
Bài 27: Cho biểu thức: $P= \left( {\dfrac{1}{{\sqrt{a}-1}}-\dfrac{1}{{\sqrt{a}}}} \right):\left( {\dfrac{{\sqrt{a}+1}}{{\sqrt{a}-2}}-\dfrac{{\sqrt{a}+2}}{{\sqrt{{a-1}}}}} \right)$
a) Rút gọn $P$
b) Tìm giá trị của a để $P > \dfrac{1}{6}$
Bài 28: Cho biểu thức: $P= \left[ {\left( {\dfrac{1}{{\sqrt{x}}}+\dfrac{1}{{\sqrt{y}}}} \right).\dfrac{2}{{\sqrt{x}+\sqrt{y}}}+\dfrac{1}{x}+\dfrac{1}{y}} \right]:\dfrac{{\sqrt{{{{x}^{3}}}}+y\sqrt{x}+x\sqrt{y}+\sqrt{{{{y}^{3}}}}}}{{\sqrt{{{{x}^{3}}y}}+\sqrt{{x{{y}^{3}}}}}}$
a) Rút gọn $P$
b) Cho $x.y=16$. Xác định $x, y$ để $P$ có giá trị nhỏ nhất
Bài 29: Cho biểu thức: $P = \dfrac{{\sqrt{{{{x}^{3}}}}}}{{\sqrt{{xy}}-2y}}-\dfrac{{2x}}{{x+\sqrt{x}-2\sqrt{{xy}}-2\sqrt{y}}}.\dfrac{{1-x}}{{1-\sqrt{x}}}$
a) Rút gọn $P$
b) Tìm tất cả các số nguyên dương $x$ để $y=625$ và $P<0,2$
Bài 30: Cho biểu thức: $P= 1:\left( {\dfrac{{x+2}}{{x\sqrt{x}-1}}+\dfrac{{\sqrt{x}+1}}{{x+\sqrt{x}+1}}-\dfrac{{\sqrt{x}+1}}{{x-1}}} \right).$
a) Rút gọn $P$
b) So sánh $P$ với $3$