Tỉ lệ bản đồ – Ứng dụng của tỉ lệ bản đồ

NỘI DUNG BÀI VIẾT

KIẾN THỨC CẦN NHỚ

1. Tỉ lệ bản đồ

Tỉ lệ bản đồ – Ứng dụng của tỉ lệ bản đồ

Ở góc phía dưới của bản đồ nước Việt Nam có ghi: Tỉ lệ $1\colon  10000000$. Tỉ lệ đó là tỉ lệ bản đồ.

– Tỉ lệ $1 : 10 000 000$ hay $\displaystyle\frac{1}{10000000}$ cho biết hình nước Việt Nam được vẽ thu nhỏ lại $10 000 000$ lần. Chẳng hạn: độ dài $1 cm$ trên bản đồ ứng với độ dài thật là $10 000 000 cm$ hay $100 km$.

– Tỉ lệ bản đồ có thể viết dưới dạng một phân số có tử số là $1$.

Ví dụ: $\displaystyle\frac{1}{1000} ; \quad \frac{1}{500} \quad ; \frac{1}{1000000}$

2. Ứng dụng của tỉ lệ bản đồ

a) Tính độ dài thật

Bài toán 1: Bản đồ trường Mầm non xã Thắng Lợi vẽ theo tỉ lệ $1 : 300$.

Tỉ lệ bản đồ – Ứng dụng của tỉ lệ bản đồ

Trên bản đồ, cổng trường rộng $2 cm$ (khoảng cách từ A đến B). Hỏi chiều rộng thật của cổng trường là mấy mét ?

Bài toán:

Chiều dài thật của cổng trường là:

$2 \times 300=600(cm)$

$600 cm=6 m$

Đáp số: $6 m$

Bài toán 2: Trên bản đồ tỉ lệ $1 : 1 000 000$, quãng đường Hà Nội – Hải Phòng đó được $102 mm$. Tìm độ dài thật của quãng đường Hà Nội – Hải Phòng.

Bài giải:

Quãng đường Hà Nội – Hải Phòng dài là:

$102 \times 1000000=102000000 mm$

$10200000 mm = 102 km$

Đáp số: $102 km$

b) Tính độ dài thu nhỏ trên bản đồ

Bài toán 3: Khoảng cách giữa hai điểm A và B trên sân trường là $20 m$. Trêm bản đồ tỉ lệ $1 : 500$, khoảng cách giữa hai điểm đó là mấy xăng-ti-mét ?

Tỉ lệ bản đồ – Ứng dụng của tỉ lệ bản đồ

Bài giải:

$20 m=2000 cm$

Khoảng cách giữa hai điểm A và B trên bản đồ là:

$2000\colon  500=4(cm)$

Đáp số: $4 cm$

Bài toán 4: Quãng đường từ trung tâm Hà Nội đến Sơn Tây là $41 km$. Trên bản đồ tỉ lệ $1 : 1 000 000$, quãng đường đó dài bao nhiêu mi-li-mét ?

Bài giải:

$41 km=41000000 mm$

Quãng đường từ trung tâm Hà Nội đến Sơn Tây trên bản đồ dài là:

$41000000\colon  1000000=41(mm)$

Đáp số: $41 mm$

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *